Mean and Weak Convergence of Fourier-Bessel Series
نویسندگان
چکیده
منابع مشابه
Mean and Almost Everywhere Convergence of Fourier-neumann Series
Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...
متن کاملConvergence of Fourier Series
The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.
متن کاملConvergence of Random Fourier Series
This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...
متن کاملPointwise convergence of Fourier series
In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...
متن کاملConvergence of Trigonometric and Walsh - Fourier Series
In this paper we present some results on convergence and summability of oneand multi-dimensional trigonometric andWalsh-Fourier series. The Fejér and Cesàro summability methods are investigated. We will prove that the maximal operator of the summability means is bounded from the corresponding classical or martingale Hardy space Hp to Lp for some p > p0. For p = 1 we obtain a weak type inequalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1073